
92% Booked
This program covers advanced neural network architectures such as Residual Networks (ResNets), DenseNets, and Transformers. Participants will gain hands-on experience in building, optimizing, and fine-tuning these architectures for various AI applications, focusing on improving model accuracy, generalization, and performance.
To equip PhD scholars, researchers, and AI professionals with advanced knowledge of neural network architectures, their applications, and optimization techniques. This course dives into state-of-the-art networks, enabling participants to apply deep learning models in complex real-world scenarios such as image recognition, NLP, and data analysis.
PhD in Computational Mechanics from MIT with 15+ years of experience in Industrial AI. Former Lead Data Scientist at Tesla and current advisor to Fortune 500 manufacturing firms.
Professional Certification Program
AI researchers, data scientists, and machine learning engineers focusing on advanced deep learning.
Take your research to the next level with NanoSchool.
Get published in a prestigious open-access journal.
Become part of an elite research community.
Connect with global researchers and mentors.
Worth ₹20,000 / $1,000 in academic value.
We’re here for you!
Instant Access
Not sure if this course is right for you? Schedule a free 15-minute consultation with our academic advisors.